CRF Blog

The Math Revolution

by Bill Hayes

In The Math Revolution for the Atlantic, Peg Tyre reports that some American students are excelling at high-level math and looks at how they are taught.

Students who show an inclination toward math need additional math opportunities — and a chance to be around other math enthusiasts — in the same way that a kid adept with a soccer ball might eventually need to join a traveling team. And earlier is better than later: The subject is relentlessly sequential and hierarchical. “If you wait until high school to attempt to produce accelerated math learners,” Loh told me, “the latecomers will find themselves missing too much foundational thinking and will struggle, with only four short years before college, to catch up.” These days, it is a rare student who can move from being “good at math” in a regular public high school to finding a place in the advanced-math community.

All of which creates a formidable barrier. Most middle-class parents might research sports programs and summer camps for their 8- and 9-year-old children, but would rarely think of supplemental math unless their kid is struggling. “You have to know about these programs, live in a neighborhood that has these resources, or at least know where to look,” says Sue Khim, a co-founder of Brilliant.org. And since many of the programs are private, they are well out of reach for the poor. (A semester in a math circle can cost about $300, a year at a Russian School up to $3,000, and four weeks in a residential math program perhaps twice that.) National achievement data reflect this access gap in math instruction all too clearly. The ratio of rich math whizzes to poor ones is 3 to 1 in South Korea and 3.7 to 1 in Canada, to take two representative developed countries. In the U.S., it is 8 to 1. And while the proportion of American students scoring at advanced levels in math is rising, those gains are almost entirely limited to the children of the highly educated, and largely exclude the children of the poor. By the end of high school, the percentage of low-income advanced-math learners rounds to zero.

To Daniel Zaharopol, the founder and executive director of Bridge to Enter Advanced Mathematics (beam), a nonprofit organization based in New York City, the short-term solution is logical. “We know that math ability is universal and interest in math is spread pretty much equally through the population,” he says, “and we see there are almost no low-income, high-performing math students. So we know that there are many, many students who have the potential for high achievement in math but who have not had opportunity to develop their math minds, simply because they were born to the wrong parents or in the wrong zip code. We want to find them.”

In an experiment that is being closely watched by educators and members of the advanced-math community, Zaharopol, who majored in math at MIT before getting a master’s in math and teaching math, spends each spring visiting middle schools in New York City that serve low-income kids. He is prospecting for students who, with the right instruction and some support, can take their place, if not at the International Math Olympiad, then at a less selective competition, and in a math circle, and eventually at a stem program at a competitive college.

Zaharopol doesn’t look for the best all-around students to admit to his program …. [more]